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ABSTRACT
We study the problem of maximizing the expected spread of influence within a social network. In this report,

we used the Twitter accounts of ”ProudBoys” members and of other users associated with them which form
of snapshot a social network in the year 2020. We analyzed the influence maximization problem in several
of the most widely studied models in social network analysis such as Independent Cascade, Decreasing
Cascade, Weighted Cascade, TRIVALENCY, Linear Threshold, and Generalized Threshold models, along with 3
influence maximization algorithms: Naive Greedy, Cost Effective Lazy Forward (CELF) and Maximum Influence
Arborescence (MIA). We compared the results from each algorithm paired with each model. As result, we
detected accounts with the most influence on the network as it pertains to diffusion of information. Click here to
access our GitHub.

1 INTRODUCTION
The widespread use of the internet has led to billions of people being connected through online social media
platforms like TikTok, Twitter, and Instagram. These platforms generate a large amount of data, which has led
to increased research on social networks. In addition to being a means of communication, social networks also
serve as a platform for sharing information, providing public services, and marketing.

In recent years, with the popularity of social networks, the influence maximization problem has become a
pressing issue in this field. The Influence Maximization problem identifies a small subset of the most important
influencers in the network to tackle some real-world problems and activities(Singh et al. 2022). Numerous
techniques to improve the performance of Influence Maximization have been proposed. In this project, first, we
will explore how to model the diffusion process to propagate the information by adapting several well-accepted
diffusion models. Second, we will compare and analyze the outcome of existing Influence Maximization
algorithms deployed on our dataset. Our goal is to identify the top influential users in Twitter’s network and
determine which models and algorithms perform best on the dataset.

2 DATA DESCRIPTION
The dataset is a sample of the Twitter follower network in 2020. It’s a directed, unweighted graph with nodes
representing Twitter accounts of members and associates of the extremist group Proud Boys. The directed links
represent the following relationship between users. In the dataset, the arrows point from the followers to the
accounts they are following. This is the opposite of the direction defined in diffusion models and for this reason
the direction of the edges was inverted.

Agents are users’ accounts, each of which has two states determined by whether they have been presented with
some piece of information. Thus we define the two states as follows:

1. An uninformed state describes those agents who have not been exposed to the information but are likely to
see it if the information is re-tweeted by other agents that they are following.
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2. An Informed state describes those who have seen the information and also are able to re-tweet it and spread
it.

3 THEORY
This section focuses on the theory behind the result of this project. The first six concepts are diffusion models,
which are used to study how information is spread through a complex network, and the last three are influenced
maximization algorithms, which are used to identify the subset of nodes in a complex network that is most
influential in terms of spreading information.

3.1 Independent Cascade Model
The Independent Cascade (IC) Model (Kempe et al. 2003) is a probabilistic model. The information spreads
according to probability Pu,v, which is the probability of node u passing the information to node v. Under the
IC model dynamics, at each time step t, the nodes’ state will change according to the informed nodes at time
step t − 1 and the probability. Note that, if Snew

t−1 is the set of newly activated nodes at time step t − 1, only the
neighbors of nodes in Snew

t−1 can be informed/activated.
As the example shown in Figure 1, active nodes are in cyan which can activate other nodes. Yellow nodes are

activated in this time step. Blue nodes are activated before but cannot activate other nodes. For the first time step,
node A is activated. In the next time step, node B and node E can be activated by node A with probability 0.8 and
0.5. Node B has successfully been activated at time step 2, but node E has not. At time step 3, node C and node
D are activated by node B. But node A cannot try to activate node E once again. In the last step, node D tries
to activate node E with a probability of 0.5 but failed and no new node is activated in this step, so the diffusion
process stops.
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Fig. 1. Independent Cascade Model

Normally, The probability can be assigned according to geographic closeness, past infection traces, or the
frequency of infection. For our Twitter data set, if one user follows n users, s/he has a probability proportional to
1/n to be informed by one of them. Specifically, the probability is equal to the reciprocal of the natural logarithm
of the in-degree of the user.

3.2 Decreasing Cascade Model
For Decreasing Cascade Model(Kempe et al. 2005), it is similar to the IC model with exception that the
probabilities change during the diffusion process. In fact, the ”Decreasing” in the name of this model means
the probability will decrease along with diffusion, so it is not ”Independent”. So for the probability Pu,v of node
u passing the information to node v, if more nodes try to inform node v, the Pu,v for all possible u is reduced,
which means it’s ’Decreasing’. We define the probability as Pu,v(u, Su), where Su is the subset of informed
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neighbors of v. And DC model needs Pu,v(u, Su) ≥ Pu,v(u, Tu), S ⊆ T to capture the property of diminishing
return.

3.3 Weighted Cascade Model
The Weighted Cascade model is a special case of the Independence Cascade model. In the WC model, the
probability Pu,v is assigned as the in-degree 1/dv of node v.

3.4 TRIVALENCY Model
The TRIVALENCY model (Chen et al. 2010a) is also similar to the Independent Cascade model, but for the
TRIVALENCY model, the probability of each node is assigned to a randomly from 0.5, 0.3, 0.1, which represents
high, medium, and low influence levels.

3.5 Linear Threshold Model
The Linear Threshold Model (Kermack and McKendrick 1927) is a mathematical model describing how
information or influence spreads through a social network. It assumes that each directed edge e(u, v) ∈ E has
a non-negative weight w(u, v) indicating the influence of the node to the node at the end of the edge, and each
node selects a threshold θv ∈ [0, 1] determining how likely it is to be activated in the spreading process. Under
the LT model dynamics, at each step t, if Sactivated

t Swait
t are collections of activated nodes and non-activated

nodes respectively, nodes are in two statuses, either activated or waiting, since Sactivated
t + Swait

t = S, where S
is the set of all nodes. At the step t, where Sactivated

t−1 is a set of informed nodes, and u ∈ ηin(v) if ∃e(u, v), nodes
in Swait

t−1 will be informed if
∑

u∈Sactivated
t−1

⋂
ηin(v) w(u, v) ≥ θv, where ηinv is the set of node v’s neighbors.

3.6 Generalized Threshold Model
The Generalized Threshold Model is a more flexible and general version of the Linear Threshold Model. Same
as LT model, in GT model (Pathak et al. 2010) node v selects a threshold θv ∈ [0, 1]. While the difference is
that each node in the GT model has more than one threshold. For example, except for the threshold θactivated

v

determining whether it can be activated, another one θspread
v is defined to determine whether enable this node

to spread information. Under the GT model dynamics, at each step t, nodes are in three statuses, wait Swait
t ,

activated Sactivated
t , or spread Sspread

t . In this case Swait
t + Sactivated

t = S still holds, since Sspread
t ⊆ Sactivated

t .
Given node v, it will be informed at time step t if

∑
u∈Sactivated

t−1
⋂

ηin(v) w(u, v) ≥ θactivated
v . At the same time, it

will be a spreading node if
∑

u∈Sactivated
t−1

⋂
ηin(v) w(u, v) ≥ θspread

v .
In our project, the activation and spread threshold of each node is related to its degree centrality. According

to the performance of different threshold values, we take centrality/20 as the activation threshold, and the
spreading threshold doubles the activation, which is centrality/10.

3.7 Naive Greedy Algorithm
For Naive Greedy Algorithm, it starts with an empty node set S and returns a list of k nodes as the most influential
nodes. In each step, it iterates every node outside S and selects the node which has the greatest influence to add
in the next step adding into S. The meaning of having the greatest influence is the node v together with S can
activate the most number of new nodes in the next time step of the diffusion model. The process is shown in
Algorithm 1.

3.8 Cost-effective Lazy Forward
The CELF algorithm utilizes the sub-modular property of the influence maximization objective function to reduce
the number of assessments on the influence spread of nodes, where CELF needs to repeatedly calculate the
marginal influence spread of each candidate node in the node-selecting process using Monte Carlo simulations
which will give accurate results, but also makin it time consuming. However, according to the paper [Leskovec
et al. 2007], the efficiency of CELF algorithm is 700 times faster than the naive greedy algorithm. Therefore, it
is still a valid algorithm to analyse the influence maximization.

The pseudocode 2 of CELF helps explain the main idea. It has a queue Q(k, mg) where k is a node and mg is
the most recently calculated marginal gain of the node k. The queue is sorted by marginal gain of the nodes in
the decreasing order. If the selected node in the loop has marginal influence computed in the current iteration,
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which means that it has the maximal marginal influence of all the other nodes, even if their gains were computed
in the previous iterations. The reason for this is that CELF is using sub-modularity and the marginal gains those
nodes will have on the current set should not be larger than the gains on the smaller set from previous iteration.
Consequently, it is possible to eliminate re-computation costs to calculate marginal gain for each node.

Algorithm 1 Naive Greedy Algorithm
Input: k ∈ N+ and Network G(V, E)
Output: Seed set S for diffusion with k nodes

inside
1: Initialization: S ← ∅;
2: for i = 1 to k do
3: min←∞
4: for v in V − S do
5: num = diffusion one step with S + v as

seed
6: if num < min then
7: min = num
8: node = v
9: end if

10: end for
11: S ← S + node
12: end for

Algorithm 2 CELF Algorithm
Require: k ∈ N+ and Network G(V, E)
Ensure: Seed set S for diffusion with k nodes

inside
1: Initialization: S ← ∅;
2: Initialization: Q← ∅;
3: for v in V do
4: mg ← f({k})
5: Q← (k, mg)
6: end for
7: for i = 1 to k do
8: while |S| < k do
9: n = Q [ 0] [ 0]

10: mg = f(S∪{n})− f(S)
11: Resort Q
12: S ← S∪arg maxv∈V f(S∪{n})−f(S)
13: end while
14: S = S ∪ {n}
15: Q = Q ∩ {n}
16: end for
17: return S

3.9 Maximum Influence Arborescence
MIA (Chen et al. 2010b) is an algorithm that aims to improve upon previous influence maximization techniques
by only considering the local influence regions of nodes in a network. Previous attempts have mostly used
approximation techniques, such as Monte-Carlo simulations. However, MIA proposes a more sophisticated
approximation that requires shorter running times, allowing it to be applied to larger networks.

To achieve this, the algorithm starts by considering the different building blocks that allow for a localized study
of the influence region of a node. The first building block is the propagation probabilities of each edge, which are
determined by some criterion exogenous to the algorithm. These probabilities are used to define the propagation
probability of a path as the joint probability of the node at the beginning of the path influencing the one at the
end.

Armed with this concept, it is possible to consider any given node and study its likelihood of influencing
any other node it can reach through an existing path. However, since the propagation probabilities of paths are
calculated as the product of all the probabilities of edges within it, the result of this operation tends to be smaller
and smaller for edges with low probabilities and/or paths composed of many edges. As a consequence, certain
paths can have probabilities that may be negligible in the dataset’s context, therefore, to account for this and to
further optimize the runtime of the algorithm, a threshold θ was introduced: any paths under the threshold are
not considered during its execution.

The next building block is the MIP (Maximum Influence Path), which is defined as the path with the highest
probability between any two nodes u and v. The MIIA (Maximum Influence In Arborescence) and the MIOA
(Maximum Influence Out Arborescence) are then defined as the union of the maximum influence paths ending
at and starting from a particular node, respectively. In other words, MIIA(v, θ) represents all of the paths through
which node v can be influenced by other nodes with a likelihood higher than the threshold, and MIOA(v, θ)
represents all of the paths through which v can influence other nodes, again, with a likelihood higher than the
threshold. The size of a node’s local influence region can therefore be controlled by altering the value of the
threshold, θ.
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Using these concepts, the algorithm calculates the Activation Probability, or the probability that a node will be
activated by a given set of seed nodes, through recursive calculations.

Given that this is an influence maximization algorithm, its goal is to maximize the Influence Spread of the
seed it gives as an output. In this case, the Influence Spread of a seed is defined as the sum of the activation
probabilities of all nodes, therefore, the bigger it is, the stronger the spread.

The seed calculated by MIA is determined iteratively. During each iteration, we evaluate the potential increase
in Influence Spread that each node can contribute, called the node’s Incremental Influence Spread. We then select
the node with the largest Incremental Influence Spread to be added to the seed, repeating this process until we
have reached the desired number of nodes in the seed.

However, these Incremental Influence Spread metrics need to be updated at each iteration: when a node u is
added to the seed, it only reaches the nodes in MIOA(u, θ), consequently, the Incremental Influence Spread of
any other node needs to be updated only if it is in MIIA(v, θ) for some v ∈MIOA(u, θ).

By only considering the local influence regions of the nodes, the algorithm is able to approximate the
Independent Cascade model while still requiring shorter running times.

4 RESULTS
The different influence maximization algorithms produced seeds containing the subsets of users which are
expected to maximize the influence spread in the network. However, since their internal mechanisms and the
diffusion models on which they rely behave differently, results can vary.

An analysis of the seeds generated by the 18 different combinations of maximization algorithms and diffusion
models led to the construction of table 1, which contains the top 5 most influential users in the network, for
which all model-algorithm pairs are in agreement, except for a small difference in the Trivalency model.

To illustrate this, Figure 2 contains a visualization of the entire network where the color reflects k-core (orange:
4, cyan: 3, green:2, dark blue: 1) and the size reflects the amount of people reached using MIA on the WC model.
The labeled nodes are the top 5 influencers.

IC, DC, WC, LT, GT TR
principe giovan principe giovan

Premises187 Premises187
MoralDK MoralDK
proudboy proudboy

enrique tarrio GavinM ProudBoy
Table 1. Top 5 users with the highest influence for the different diffusion models.

5 DISCUSSION
5.1 Models

Models IC DC WC TR LT GT
Type Prob Prob Prob Prob Math Math
Avg Probability or Influence 2.06−5 2.06−5 9.78−6 2.49−5 9.77−6 9.77−6

Std Probability or Influence 3.4−3 3.4−3 3.0−3 3.1−3 3.0−3 3.0−3

Avg Threshold - - - - 0.001 activate 4.14−5

spread 8.29−5

Table 2. Difference between models

Table 2 lists the attributes of the graph fitted by each model. These numbers are calculated before the diffusion
begins.

We tested the 6 models with 500 iterations and calculated averages. In Figure 3, we compare the average
running time the average number of diffusion steps, and the average number of informed nodes for 6 different
models as a function of the number of initial seed nodes.
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Fig. 2. Network visualization: color reflects k-core (orange: 4, cyan: 3, green: 2, dark blue: 1) and size reflects the amount of people
reached using MIA on the WC model. The labeled nodes are the top 5 influencers.

It can be observed that all of the models show a similar increasing trend in Figure 3(a) and 3(c), the running
times and a number of activated nodes increased with the number of seed nodes. This aligns with the common
understanding that more seed nodes lead to a greater spread of information. The differences in the values on the
y-axis can be attributed to the different activation probabilities or thresholds of the models.

Regarding specific models, The IC model and the DC model show similar trends in all three figures due to
their similar activation probability. The main difference between these two models is that the probability of
information spread in the DC model gradually fades over time, resulting in a small variance in the results.

The TR model has a larger average probability than other probability models, but it activated fewer nodes than
IC and GC models. Because the TR model has random propagation probability for all nodes, those nodes with
the greatest influence may not have the greatest probability to spread the information.

In comparison, the WC model has a much smaller probability of activation, leading to smaller numbers of
activated nodes and diffusion steps compared to the other models.

For the LT model, Figure 3 shows that LT always gets the most running steps and activated nodes. Because
nodes in LT will be influenced by all of the activated neighbors compared to those probabilistic models, in which
neighbors’ influence on the node is independent. Since GT has another threshold for spreading, which doubles
the activation threshold, the running steps, and the final activated nodes are lower than LT.

Of particular note is the fact that the lines of LT in Figure 3(c) and 3(a) stabilize when there are more than 20
seeds, which means it can achieve the max activated node number with 20 nodes. At the same time, in Figure
3(b) we can see a slight drop in running steps. Because with the help of more nodes, it needs fewer steps to fully
activate the network.

5.2 Models with Algorithms
Non-backtracking centralities and k-core centralities were used as a baseline. For the latter, nodes in the same
shell were sorted by out-degree in decreasing order, because outgoing edges represent pathways that can be
used to spread influence. This gives it an advantage in all models, except Trivalency, because their propagation
probabilities are determined using degree values. Despite this advantage, all the Influence Maximization
algorithms tend to outperform them.
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(a) Average Running Time Length (b) Average Number of Diffusion Step (c) Average Informed Nodes Number

Fig. 3. Compare Models By Random Selected Nodes

(a) run-times for IC and WC models (b) run-times for DC and TR models (c) run-times for LT and GT models

Fig. 4. Comparison of the algorithm run-times for different diffusion models

(a) Influence obtained for the IC model (b) Influence obtained for the DC (c) Influence obtained for the WC

(d) Influence obtained for the TR (e) Influence obtained for the LT (f) Influence obtained for the GT

Fig. 5. Comparison of the influence obtained by the different algorithms for different diffusion models

Figure 5 reflect the level of influence achieved by each influence maximization algorithm as a function of the
size of the seed set (i.e. the set of individuals chosen as initial influencers) for different diffusion models, the
run-time of the algorithms was limited to a maximum of 12 hours to limit the computational load, for this reason
certain algorithms were able to calculate bigger seeds than others.

Greedy, CELF and MIA algorithms tend to perform the best at any given seed size. Since CELF doesn’t
compute spread for all nodes in each iteration, the computation time for CELF can be shorter when compared
to Naive Greedy algorithm, while the influence is similar to each other, which can be seen in the plots.4 and 5,
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Fig. 6. Correlation matrix showing the relationship between the individual influence of a user (measured as the amount of people they
can reach individually) and different user properties.

but, notably, MIA takes only a fraction of the time to achieve results similar to the ones put forward by the Naive
Greedy algorithm and CELF (Figure 4). This is reasonable given that MIA’s goal is to be a heuristic alternative
to Naive Greedy with similar or better performance and better scaling: the experiments presented confirm that it
succeeds at its goal in this particular dataset.

5.3 Analysis of correlations between influence metrics and user attributes
After having determined the most influential nodes or individuals in the dataset, the correlation of their influence
metrics with respect to other personal attributes can be evaluated. Three subsets of attributes were subject
to consideration: Twitter metrics, such as the individual’s follower count and the number of tweets; node
centralities, such as degree, closeness, or betweenness centrality and node properties such as in-degree and
out-degree.

In this case, the influence metrics are calculated according to the number of people each user can reach
individually when their diffusion is simulated using diffusion models.

As far as Twitter metrics are concerned, Figure 6 shows how the influence metrics have little to no correlation
to values like the number of followers, favorite tweets, statuses (tweets), or friends.

There is no correlation between follower count and influence, which seems counterintuitive given that common
sense would suggest that users with more followers should have a greater influence. This could be due to two
factors: first, not all followers are equally likely to share or redistribute information, as their own follower count
and the influence of their followers can affect this. Secondly, the dataset only includes a small subset of Twitter
users, many of whom are connected to the Proud Boys group, and is therefore not representative of the entire
social network. The out-degree of a user in the dataset, on the other hand, may be a more accurate measure of
their potential influence than the total number of followers they have across the entire platform.

In fact, Figure 6 shows the correlations of influence metrics to in-degree and particularly out-degree are very
high despite having different absolute values. This is to be expected given that most models calculate probabilities
based on degree values. The Trivalency model, on the other hand, assigns probabilities 0.1, 0.3, or 0.6 randomly,
and therefore the correlation is not as strong, but still significant because outgoing edges represent pathways for
influence in all models.

Finally, the correlations to other centrality metrics, show a similar story, with all models being moderately
correlated to degree-centrality and more so to betweenness centrality. This is sensible given that the latter ascribes
centrality based on whether a node is on many shortest paths between other nodes in the network, and this reflects
a node’s ability to route information, which is akin to the objective of influence maximization.
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