
GPT Generated Text Detection

Nan Li (22-736-169)
Yiqin Zhang (22-738-397)

May 5, 2024

Abstract

In an era where AI-driven language models like GPT have become increasingly
prevalent, the need for effective GPT detection techniques has never been more critical.
In this project, we collected textual data generated by both GPT-3 and GPT-3.5.
We used different language models to vectorize texts and trained several models to
classify if the text is human-written or GPT-generated. An interesting discovery
is that, contrary to our expectations, GPT-3.5 did not perform more like a human
than GPT-3. In other words, our best-performing model achieved higher accuracy
in distinguishing GPT-3.5 generated text from GPT-3 generated text compared to
human-written text.

Figure 1: Interpretation of Two Female Data Scientists Trying to Defeat ChatGPT



1 Introduction

This project detects whether a paragraph is written by a human or generated by GPT.
The original dataset consists of articles from Wikipedia [1] and GPT-3 generated text
using the same articles’ starting sentence (known as prompts). We created a second
dataset from extracting texts from GPT-3.5 via OpenAI’s API using the same prompts.
We processed, trained, and evaluated the datasets using 4 vectorization techniques and
13 classification models and finally compared and contrasted the performances between
models and datasets.

In this report, we summarize the experiment process and key findings. Details regard-
ing implementation can be found in our project repository: GPT Generated Text Detection
1.

2 Data Set

We chose the GPT-wiki-intro dataset [1] from Huggingface. The dataset was constructed
according to the Wikipedia dataset [2] and GPT-generated text based on that. The dataset
contains Wikipedia introductions, which we use as human-written, and GPT (Curie) gen-
erated introductions. We know that Curie is founded upon GPT-3 and does not achieve
the same level of excellence as GPT-3.5. So we create our own dataset using OpenAI API
and GPT-3.5-Turbo and the same prompts from the original dataset (codes can be found
in chatgpt api.ipynb, prompts used for generation are in GPTprompt.pkl and responses are
in GPTresponse.pkl).

The original GPT-wiki-intro dataset contains some columns we don’t need, so we
only selected ’wiki intro’ (Introduction paragraph from Wikipedia) and ’generated intro’
(Introduction generated by GPT (Curie) model). Due to computer limitations, we have
chosen to work with a subset of the dataset, specifically 1500 rows, dividing them into
1500 positive and 1500 negative data points. Additionally, the prompts column was used
to generate text from GPT-3.5 and also generate a dataset that contains 1500 positive
and 1500 negative data points.

To introduce randomness into the datasets, we shuffle the 3000 data points for both 2
datasets to break the original order of the dataset. And we take the first 300 data points
out from each dataset for hyperparameter search since using all the data will take a lot of
time (codes can be found in data prepare.ipynb).

3 Preprocessing

We did normalization to all text data, which includes removing extra space, making all
letters lowercase, and removing emojis. These normalization steps were taken in the data
preparation stage. And then we use 4 methods to vectorize the normalized texts.

1. Bag of Words: In the BoW model, a text document is treated as a collection of
words, and the order of words is ignored. The main idea behind BoW is to represent a
document as a histogram of word occurrences. scikit-learn [3] offers a utility known as
”sklearn.feature extraction.text.CountVectorizer”, which we employ in our project.
The CountVectorizer first tokenizes the text data, then builds a vocabulary, and last
counts word occurrences. However, the vocabulary size for all words is 36862 for
GPT-3 dataset, which is too long for the model to train. So we ignore words that
have a document frequency strictly lower than 15. Then we have the vector length
as 2815 for GPT-3 dataset and 4199 for GPT-3.5 dataset (code can be found in
S2V BoW.ipynb).

1Github Repository: https://github.com/yvonne-yiqin-zhang/GPT_Generated_Text_Detection

1

https://github.com/yvonne-yiqin-zhang/GPT_Generated_Text_Detection


2. Term Frequency-Inverse Document Frequency: TF-IDF is an enhancement
of the BoW model that takes into account the importance of words in a document
relative to their frequency in a corpus. It is particularly useful for identifying the sig-
nificance of words in a document within a larger collection of documents. We also use
the scikit-learn function ”sklearn.feature extraction.text.TF-IDFVectorizer”. The
same length issue of BoW happens in TF-IDF too, so we used the same limit for
this model (code can be found in S2V TFIDF.ipynb).

3. Sentence-BERT: Unlike traditional methods such as BoW or TF-IDF, SBERT [4]
aims to capture semantic similarity and context in sentence representations. It’s
an extension of the popular BERT (Bidirectional Encoder Representations from
Transformers) model, which was originally designed for word-level embeddings. But
SBERT has been adapted and can be used with text embedding tasks (code can be
found in S2V SBERT.ipynb).

4. Sent2Vec: Sent2Vec[5] is another Python package that provides a simple interface
for sentence embeddings. We use the pre-trained weights ’distilbert-base-uncased’
in this project which is also a BERT model. But the weights only support text no
longer than 512 chars, so we only take the first 512 chars in every text (code can be
found in S2V sent2vec.ipynb).

We used the 4 methods to vectorize all the 3000 data points from both datasets and
save them for the model training.

4 Model Training

Leveraging the extensive model inventory available in scikit-learn [3], we experimented
with thirteen algorithms for this classification problem. Broadly speaking, these algorithms
can be grouped into four categories.

1. Linear Models: If the underlying relationship between these vectors is relatively
simple, linear models can be a good starting point to uncover these relationships.
Logistic Regression (LR) applies logistic sigmoid function to transform output to
probability value which then is mapped to binary classes. Ridge Classifier applies
L2 regularization to linear regression to prevent model overfitting. With single-layer
and a linear activation function, Perceptron can be seen as a linear model with lin-
ear decision boundary. Stochastic Gradient Descent (SGD) implements regularized
linear models with SGD learning.

2. Decision Tree and Ensemble methods: Tree-based methods often perform very
well in classification tasks. Decision Tree mimics the structure of a tree to make deci-
sions based on input features which also has the advantage of explaining the decision
process. For more complex problems, ensemble methods such as Bagging, Random
Forest, Adaptive Boosting Classifier (AdaBoost) and Gradient Boosting (GBoost)
can improve model accuracy though differ in the methods used. For example, Bag-
ging uses bootstrap resampling to ensemble different decision trees independently
and voting to come up with the final prediction whereas Random Forest is an ex-
tension of bagging but also introducing randomness by only considering a subset of
features during each decision split.

3. Neural Network: Multi-layer Perceptron (MLP) builds on top of Perceptron and
allows multiple number and size of layers, as well as allowing flexible options of
activation functions such as ’logistic’, ’tanh’ and ’relu’. This model should be able
to capture more complex relationships between input data.

2



4. Miscellaneous: K Nearest Neighbours (KNN) can be an easy but effective algo-
rithm to detect relationships between input features. With non-linear kernel, Sup-
port Vector Machine (SVM) is another powerful algorithm which has non-linear
decision boundary and can learn complex relationships. Gaussian Naive Bayes
(GaussianNB), on the other hand, is a probabilistic algorithm that is particularly
well-suited for data with continuous features when the Gaussian distribution of each
feature is not severely violated.

We first implemented a function compute GS to perform hyperparameter search for
each vector dataset and each model mentioned above. We utilized GridSearchCV with
Cross Validation (CV) from scikit-learn [3] to select optimal model parameters with the
highest f1 score. The function returns the list of models initialized with best-performing
parameters. For the dataset built based on GPT-3 alone, we performed 156 hyperpa-
rameter search (4 vectorized dataset x 13 model x 3 cross-validation splitting strategy).
We further analyze these results in more details below. We use the smaller dataset (300
samples) to perform parameter search. After obtaining the best parameters, we use the
larger dataset (3000 samples) to perform model training.

We perform the same parameter searching and model training procedures on dataset
extracted from GPT-3.5 in hope of comparing and contrasting model performance. Codes
can be found in train model.ipynb in our project repository.

5 Evaluation

We evaluated our classification models based on four evaluation metrics: accuracy, preci-
sion, recall and f1 score.

1. Accuracy measures the overall correctness of the model’s prediction. It can be a good
metric when the dataset is balanced which is our case here with the same number
of human-generated and bot-generated text data.

2. Precision quantifies the accuracy of positive predictions made by the model. It can
be a good metric when you want to steer the model to have fewer false positives.

3. Recall quantifies the model’s ability to identify all relevant instances in the data. It
can be a good metric when you want the model to capture as many of the actual
positives as possible.

4. F1 score is the harmonic mean of precision and recall. This can be a good metric in
general as this single score balances precision and recall.

We select F1 score as our main evaluation metric since it is a more balanced score
between precision and recall and during our analysis, we did not observe a significant
variation between accuracy and f1 scores (i.e. model performs well in f1 score also performs
well in accuracy and vice versa). For more details, refer to result analysis.ipynb in our
project repository. We further rely on test F1 score only since it is less biased than the
train score.

We implemented a function compute model performance that takes a list of mod-
els initialized with fine-tuned hyperparameters, training data and labels, performs cross
validate from scikit-learn [3] and saves average validation scores in a log. For the dataset
built based on GPT-3 alone, we performed 156 model train and evaluation each of which
uses the model configuration returned from compute GS (4 vectorized dataset x 13 model
x 3 cross-validation splitting strategy). We further analyze these results in more details
below.

For evaluation, we also perform the same evaluation procedures on dataset extracted
from GPT-3.5 in hope of comparing and contrasting model performance. Codes can be
found in train model.ipynb in our project repository.

3



6 Analysis and Conclusion

Upon reviewing all the experiment results, we summarized our findings hereunder. Ma-
jority of the findings are based on results using GPT-3 dataset but generally applicable to
GPT-3.5 as well. We discuss some GPT-3.5 specific findings in point 6.

1. Model performance does not vary significantly between vectorization methods. We
thought TF-IDF should perform better than BoW since TF-IDF has more infor-
mation on frequency. But BoW performs better on several models. We also would
think SBERT and Sent2Vec would be better since they use the popular pre-trained
model Bert, but they seem to work worse with most models.

2. No one best performing model across four vectorization methods, but overallGBoost
seems to perform the best for two out of four vectorized datasets. For BoW and
TF-IDF, GBoost performs the best whereas Ridge and SGD performs the best for
SBERT and for Sent2Vec respectively. We see KNN and Ridge perform consid-
erably worse in two out of four vectorized datasets respectively with KNN having
the worst f1 score. Their simplicity may be the contributing factor for their poor
performance.

3. GBoost is super time consuming to train. It is not surprising that ensemble methods
takes longer to train due to its complexity. However, we see as much as 17x longer
training time than other ensemble method such as Random Forest. One should be
cautious about the trade-off between slightly higher accuracy v.s. long training time.

4. We also note SVM.SVC has significantly higher scoring time than other models (37x
higher than average excluding SVC). This may be explained by the use of non-
linear kernel (i.e. ’rbf’) and the number of support vectors which demand higher
computation complexity.

5. We observe overfitting across all models and increasing cross validation from 3 to
8 helps reduce overfitting in some instances. Taking train/test as a benchmark for
overfitting ratio, we examine model overfit across all models, all vectorized datasets
and all validation strategy. We note Ridge overfits BoW and TF-IDF consistently
and higher the number of CV, higher the overfitting ratio. For SBERT and Sent2Vec,
Bagging overfits the most across all combination except SBERT with cv=3 and cv=5
where KNN demonstrates higher ratio. Increase our dataset size should effectively
reduce overfitting, however, would also drastically increase computation time.

6. Contrary to our expectation, the models performed much better on datasets ex-
tracted from GPT-3.5. As can be compared in Figure 2, the best model achieved
99% f1 test score with BoW vectorization technique. Furthermore, Ridge con-
sistently perform the best on SBERT whereas LR performs the best on BoW and
TF-IDF, and MLP performs the best on Sent2Vec vectorized dataset. This suggests
that even though GPT-3.5’s performance is impressive to a human, it has very strong
characteristics (e.g. words, sentence patterns and etc) that can be easily deciphered
by machine learning models, sometimes as simple as a Logistic Regression.

Detailed model results on GPT-3 datasets can be found in 2a and GPT-3.5 in 2b. In
our project repository, result analysis.ipynb contains codes and experiment result folder
contains all raw result logs.

Based on the cross validation results above and for each vector method, we selected
the best performing model with optimal hyperparameters as our ’chosen’ model (high-
lighted in yellow in Figure 2, separated by GPT-3 and GPT-3.5). We randomly selected
50 prompts and a total of 100 sample data (1 generated and 1 wiki text) from our dataset
as the test set and used the remaining as the train set (i.e. 2900 data samples). The

4



test classification results are summarized in Figure 3. It is obvious to see our model per-
forms better on detecting GPT-3.5 generated texts with higher accuracy and F1 score
across the board. This is consistent with our cross validation results but remains opposite
from our initial expectation. Turbo tfidf and Turbo bow achieve (almost) perfect classi-
fication results which may suggest the similar underlying methodology used in these two
vectorization methods.

In attempt to understand the difference in performance between GPT-3 and GPT-3.5,
we filtered out the false negatives from test set bow and compared GPT-3, GPT-3.5 and
Wiki texts. False negatives are the samples that are generated by GPT but falsely classified
by our model as written by human. Not surprisingly to our belief, neither GPT-3 nor
GPT-3.5 generated text is distinguishable to human eyes. They all read fluently, coherent
and have no grammatical errors which are all strong arguments to support this detection
being a difficult task. However, the hidden but strong characteristics within these texts
are astonishingly easy for machine learning models to pick up. test dataset deepdive.ipynb
in our repository shows discrepancy results and displays one text example for comparison.

(a) Model Result GPT-3 (b) Model Result GPT-3.5

Figure 2: Summary of F1 test scores with 8-fold cross validation from (a)GPT-3 and
(b)GPT-3.5 datasets. fit time and score time compute the averages of four vectorized
datasets. Highest performing models are highlighted in yellow for BoW, SBERT, Sent2Vec
and TF-IDF respectively.

Figure 3: Test result for each vectorized datasets. Columns with ’Turbo’ indicate GPT-3.5
dataset.

7 Future work

Comparison between datasets extracted from GPT-3, GPT-3.5 and GPT-4 can yield in-
teresting results. This analysis can also be extended to other language models such as
BingAI and LaMDA. Further deep dive into the reasons behind better model performance
on GPT-3.5 dataset would be highly valuable because it requires deeper understandings
of the inner workings of these fantastic language models. One such method could be
to utilize model-agnostic explainable algorithms such as LIME or SHAP to determine
importance components of a sentence. The total time spent on parameter search and
model training took just over seven hours with a Duel-core Macbook using a relatively
small dataset. With higher computation capability, a much larger dataset can be utilized
during model training and evaluation which should reduce model overfitting and further
increase accuracy.

5



References

[1] Aaditya Bhat, “Gpt-wiki-intro (revision 0e458f5),” 2023. [Online]. Available:
https://huggingface.co/datasets/aadityaubhat/GPT-wiki-intro

[2] W. Foundation. Wikimedia downloads. [Online]. Available: https://dumps.wikimedia.
org

[3] G. Varoquaux, L. Buitinck, G. Louppe, O. Grisel, F. Pedregosa, and A. Mueller,
“Scikit-learn,” GetMobile: Mobile Computing and Communications, vol. 19, no. 1, p.
29–33, Jun 2015.

[4] N. Reimers and I. Gurevych, “Sentence-bert: Sentence embeddings using siamese
bert-networks,” in Proceedings of the 2019 Conference on Empirical Methods in
Natural Language Processing. Association for Computational Linguistics, 11 2019.
[Online]. Available: https://arxiv.org/abs/1908.10084

[5] P. A. Alberto Marengo, “sent2vec: Unsupervised Learning of Sentence Embeddings,”
https://pypi.org/project/sent2vec/, 2022, pyPI Python Package.

6

https://huggingface.co/datasets/aadityaubhat/GPT-wiki-intro
https://dumps.wikimedia.org
https://dumps.wikimedia.org
https://arxiv.org/abs/1908.10084
https://pypi.org/project/sent2vec/

	Introduction
	Data Set
	Preprocessing
	Model Training
	Evaluation
	Analysis and Conclusion
	Future work

